skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ishrak, Ragib"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mid-infrared microscopy is an important tool for biological analyses, allowing a direct probe of molecular bonds in their low energy landscape. In addition to the label-free extraction of spectroscopic information, the application of broadband sources can provide a third dimension of chemical specificity. However, to enable widespread deployment, mid-infrared microscopy platforms need to be compact and robust while offering high speed, broad bandwidth, and high signal-to-noise ratio. In this study, we experimentally showcase the integration of a broadband, high-repetition-rate dual-comb spectrometer (DCS) in the mid-infrared range with a scanning microscope. We employ a set of 1-GHz mid-infrared frequency combs, demonstrating their capability for high-speed and broadband hyperspectral imaging of polymers and ovarian tissue. The system covers 1000 cm−1 at νc = 2941 cm−1 with 12.86 kHz spectra acquisition rate and 5 µm spatial resolution. Taken together, our experiments and analysis elucidate the trade-off between bandwidth and speed in DCS as it relates to microscopy. This provides a roadmap for the future advancement and application of high-repetition-rate DCS hyperspectral imaging. 
    more » « less